New processes for automated fabrication of fiber and silicone composite structures for soft robotics

metal fabric
Credit: CC0 Public Domain

Researchers from the Singapore University of Technology and Design (SUTD) have developed novel techniques, known as Automated Fiber Embedding (AFE), to produce complex fiber and silicone composite structures for soft robotics applications. Their work was published in IEEE Robotics and Automation Letters.

Many soft robot components, including sensors and actuators, utilize embedded continuous fibers within elastomeric substrates to achieve various functionalities. However, manual embedding of continuous fibers in soft substrates is challenging due to the complexities involved in handling precise layering, and retaining of the fibers in the patterned positions which are prone to inconsistencies.

In contrast, the AFE approaches developed by the research team led by Assistant Professor Pablo Valdivia y Alvarado, enabled high precision fabrication of complex layered composites without manual user intervention, thus significantly augmenting the range of fabrication possibilities while saving time and labor.

The techniques exploited seamless combinations of fiber embedding with elastomeric deposition via Direct Ink Writing in an automated manner and allowed precise control of depth and fiber spacing within composite structures. This process automation has great potential for the fabrication and tailoring of soft robot components which require complex geometries that cannot be easily achieved manually.

Automated fiber embedding for soft mechatronic components. Credit: SUTD

In the study, three different approaches for automated layering and embedding of fibers inside silicone elastomers were discussed. To demonstrate the versatility of the techniques, several soft robotic applications ranging from inflatable actuators to inductive charging coils were also presented. Embedded fiber patterns enabled by the AFE fabrication processes were used to control color change, tailor structural and morphological properties, activate thermal inputs, and enable electrical properties in soft robotic structures. Additionally, combinations of the AFE methods were demonstrated for the autonomous fabrication of several soft mechatronic components.

“Our work demonstrates the development of a family of fabrication processes that can be used to tailor complex fiber layouts within soft composites. This will pave the way for various novel applications in soft robotics including soft sensors and soft communication devices,” said principal investigator, Assistant Professor Pablo Valdivia y Alvarado from SUTD.


Researchers break new ground in 3D printed soft robotics with largest range of polymer hybrids


More information:
T. Stalin et al, Automated Fiber Embedding for Soft Mechatronic Components, IEEE Robotics and Automation Letters (2021). DOI: 10.1109/LRA.2021.3067244

Provided by
Singapore University of Technology and Design

Citation:
New processes for automated fabrication of fiber and silicone composite structures for soft robotics (2021, June 9)
retrieved 9 June 2021
from https://techxplore.com/news/2021-06-automated-fabrication-fiber-silicone-composite.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Stay connected with us on social media platform for instant update click here to join our  Twitter, & Facebook

We are now on Telegram. Click here to join our channel (@TechiUpdate) and stay updated with the latest Technology headlines.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TechiLive.in is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.