Study Reveals How Breast Cancer Cells Develop Resistance

Researchers used single-cell RNA sequencing to identify resistant traits cancer cells acquire; these cancer cells are able to persist despite therapy.


Resistant traits are acquired and found them as early as two weeks after the start of a treatment regimen, which is months faster than current methods used to measure treatment response.

“If health care providers are able to identify the development of tumor resistance earlier, then they can quickly switch gears and offer a different treatment regimen that could eventually bring the breast cancer patient into remission rather than continuing on a path that may fail to achieve a positive outcome,” Bild said.

“With the current available set of precision medicine tools, medical professionals could measure patient response to treatment earlier to offer treatment options that are more likely to work for each individual patient.”

Bild and her colleagues studied the evolution of the DNA and RNA in breast tumor cells of postmenopausal women with ER+ breast cancer who were enrolled in the FELINE trial. These patients were treated with endocrine therapy (letrozole) alone and in combination with cyclin-dependent kinase (CDK) inhibitor therapy (ribociclib).

Targeted therapy in a neoadjuvant setting was given to patients to assess response. Biopsies from over 40 patients’ tumors were processed and analyzed from cells taken prior to, two weeks after and six months from the start of endocrine and combination treatments.

Resistant cells that persist even after endocrine and cell cycle (CDK4/6) inhibition therapy tend to shift their growth engine from using estrogen signaling to using alternative growth factor receptors and to rewiring cell cycle pathways.

Targeting acquired resistance pathways with appropriate therapies may help doctors in the future treat patients with resistant ER+ early-stage breast cancer.

“The study is impressive in its scope, presenting comprehensive genomic profiling of the longitudinal samples from multiple patients,” said Suwon Kim, Ph.D., who was not involved in the research and is an associate professor at Translational Genomics Research Institute (TGen), an affiliate of City of Hope, and a faculty member of the University of Arizona College of Medicine.

“The results are significant, revealing the emergence of the alternate specific pathways in single tumor cells as they become resistant to CDK inhibitors and endocrine therapy. The study findings offer opportunities for evidence-guided therapeutic intervention for therapy-resistant breast cancer.”

Understanding this, could enable scientists to design novel treatment regimens that target tumor resistance. Bild and colleagues are now identifying drugs that block the traits found specifically in resistant cancer cells.

“Early-stage ER+ and PR+ (progesterone receptor positive) breast cancer is often curable, and we need to continue down this line of research to design therapy strategies that provide a positive patient outcome that lasts,” Bild said.

“I recommend that, when possible, clinicians continue to collect tumor biopsies so we can measure cancer cell responses during treatment to understand how the patient’s tumors are responding.

In addition, we need to look at RNA changes and not just DNA modifications, as these changes may more broadly capture resistance mechanisms.”

She added, “I am grateful to patients who participate in clinical trials so that scientists can continue to find better ways to treat this disease.”

Source: Medindia

Stay connected with us on social media platform for instant update click here to join our  Twitter, & Facebook

We are now on Telegram. Click here to join our channel (@TechiUpdate) and stay updated with the latest Technology headlines.

For all the latest Health News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TechiLive.in is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.